I thank Dr Marti Barrett for her work in growing the original crystals and Dr Richard E. Marsh for his encouraging advice and counsel.

References

DUCHAMP, D. J. (1964). CRYM crystallographic computing system. Am. Crystallogr. Assoc. Meet., Bozeman, Montana. Paper B14, p. 29.

Acta Cryst. (1983). C39, 1612–1613

International Tables for X-ray Crystallography (1974). Vol. IV, Birmingham: Kynoch Press.

JOHNSON, C. K. (1965). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.

LARSON, A. C. (1967). Acta Cryst. 23, 664-665.

- MANDEL, G. S., MARSH, R. E., SCHAEFER, W. P., MANDEL, N. S. & WANG, B.-C. (1977). Acta Cryst. B33, 3185–3188.
- WERNER, A. (1910). Justus Liebigs Ann. Chem. 375, 1-144 (preparation p. 100).

Affinement de la Structure du Tétramétaphosphate d'Ammonium et de Cérium, CeNH₄P₄O₁₂. Relation Entre la Forme Cubique des Composés du Type Ln M^{T} P₄O₁₂ et le Tétramétaphosphate d'Aluminium Al₄(P₄O₁₂)₃

PAR MOHAMED RZAIGUI

Ecole Normale Supérieure, 43 rue de la Liberté, Le Bardo, Tunis

ET MARIE-THÉRÈSE AVERBUCH-POUCHOT ET ANDRÉ DURIF

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 25 avril 1983, accepté le 2 septembre 1983)

Abstract. $M_r = 474.04$, cubic, $I\overline{43}d$, a = 15.23 (1), $V = 3532.6 \text{ Å}^3$, Z = 12, $D_x = 2.674 \text{ Mg m}^{-3}$, $Ag K\alpha$, $\lambda = 0.5608 \text{ Å}$, $\mu = 23.43 \text{ cm}^{-1}$, F(000) = 2700, 295 K, R = 0.030 for 459 independent reflexions. The packing of the P_4O_{12} ring anions is found to be similar to the one already observed in $Al_4(P_4O_{12})_3$ and in some derived structures.

Introduction. Un certain nombre de phosphates du type $LnM^{I}(PO_{3})_{4}$ sont polymorphes et possèdent une forme cubique. Dans ce dernier cas l'anion phosphorique est un cycle P_4O_{12} . La structure de β -CsNd P_4O_{12} a été déterminée par Soldato, Kuz'min, Ilyakhim & Belov (1981). Certains aspects de ce travail [occupation statistique d'un site 16(c) par 12 atomes de césium, affinement isotrope du facteur thermique de l'atome le plus lourd] montraient l'intérêt d'une révision de la structure cristalline de cette classe de composés. Cet intérêt fut encore accru lorsqu'un examen préliminaire de l'arrangement atomique proposé, nous a montré une analogie très poussée avec la structure cristalline du tétramétaphosphate d'aluminium: Al₄(P₄O₁₂)₃, analogie non signalée par les auteurs. La présente étude a été réalisée à l'aide du sel de cérium-ammonium: $CeNH_4P_4O_{12}$ dont la préparation chimique a été décrite par l'un de nous (Rzaigui, 1983).

Partie expérimentale. Le cristal présentait la forme d'un tétraèdre régulier de 0,24 mm d'arête; appareillage: Enraf-Nonius; monochromateur: graphite; les

paramètres de la maille calculés avec 18 réflexions d'angle haut; domaine des mesures: 3 à 20° (θ); type de balayage: ω ; domaine de balayage: 1–40° θ ; vitesse de balayage: de 0,01 à 0,03° s⁻¹ suivant l'intensité de la réflexion; temps de mesure du fond continu: 23 à 70 s; réflexions de référence: 800 et 800; nombre de réflexions mesurées: 3026 (hkl; h,k,l 0-18); 588 réflexions indépendantes ont été extraites; correction de Lorentz-polarisation, aucune correction d'absorption. Structure résolue par des méthodes classiques: exploitation de la fonction de Patterson puis synthèses de Fourier, après quelques cycles d'affinement, basé sur F, utilisant des facteurs de températures anisotropes, $R = 0,030, R_w = 0,036, S = 2,785$, pour 459 réflexions telles que $F_a > 3\sigma(F)$;* schéma de pondération unitaire; $\Delta_{\text{max}}/\sigma = 0.01$ (β_{23} de N), 0.00 ailleurs; $\Delta \rho_{\text{max}} 0.4$, $\Delta \rho_{\text{min}}$ $0,0 \text{ e} \text{ } \text{Å}^{-3}$; facteurs de diffusion ceux des atomes neutres (International Tables for X-ray Crystallography, 1974); les programmes SDP (Enraf-Nonius, 1979) ont été utilisés.

Discussion. Le Tableau 1 rassemble les coordonnées atomiques finales. Comme nous l'avons signalé au début de ce travail il existe une analogie très prononcée

© 1983 International Union of Crystallography

^{*} Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 38798: 6 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

entre la présente structure et celle du tétramétaphosphate d'aluminium $Al_4(P_4O_{12})_3$ et de quelques autres tétramétaphosphates de formules chimiques apparemment très différentes dont nous rappelons ci-dessous quelques caractéristiques:

Al₄(P₄O₁₂)₃,
$$I\bar{4}3d$$
, $a = 13,730$ Å, $Z = 4$
Zn₄Na₄(P₄O₁₂)₃, $I\bar{4}3d$, $a = 14,57$ Å, $Z = 4$
CeNH₄P₄O₁₂, $I\bar{4}3d$, $a = 15,23$ Å, $Z = 12$.

Dans ces trois séries de composés on constate que la charpente formée par l'ensemble des anions cycliques P_4O_{12} est rigoureusement identique; par contre les lacunes de cette charpente sont occupées de manière très différentes par les divers cations associés.

Dans le cas du tétramétaphosphate d'aluminium: Al₄(P₄O₁₂)₃ (Pauling & Sherman, 1977; Bagieu-Beucher & Guitel, 1978), les 16 atomes d'aluminium occupent une lacune octaédrique de symétrie ternaire [16(c)] en $x \simeq 0,104$.

Dans le cas du sel de zinc-sodium: $Zn_4Na_4(P_4O_{12})_3$ et de ses nombreux isotypes (Averbuch-Pouchot & Durif, 1983) les cations associés deux fois plus nombreux que dans le premier composé se répartissent ainsi: 16 atomes de sodium occupent la lacune octaédrique [16(c)] occupée par l'aluminium dans le premier type de structure ($x \simeq 0,110$), 16 atomes de zinc occupent une autre lacune octaédrique également située sur l'axe ternaire en $x \simeq 0,235$.

Par contre dans le cas du composé, objet de ce travail, CeNH₄P₄O₁₂, les douze atomes de cérium occupent la position 2(*b*), tandis qu'un nombre égal de groupements ammonium occupent statistiquement une lacune octaédrique de l'axe ternaire [16(c)] identique à celle occupée par le sodium dans le cas de Zn₄Na₄(P₄O₁₂)₃ avec ici $x \simeq 0,112$.

Les principales distances interatomiques et angles de liaison sont rapportées dans le Tableau 2.

Acta Cryst. (1983). C39, 1613–1615

Tableau 1. Paramètres de position et $B_{éq}$ pour CeNH₄P₄O₁₂

	$B_{\mathrm{\acute{e}q}} = rac{4}{3} \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$						
		x	У	z	$B_{\rm éq}({\rm \dot A}^2)$		
Ce(1)	12(b)	0,8750	0	ł	1.12(1)		
N	16(c)*	0,112 (2)	0,112 (2)	0.112 (2)	1.9 (2)		
Р	48(e)	0,1227 (2)	0,2994 (1)	0,3854 (2)	1.77 (5)		
O(1)	48(e)	0,4236 (5)	0,0328 (4)	0.3393 (4)	1.9 (2)		
O(2)	48(e)	0,4626 (5)	0,1699 (4)	0,2639 (5)	2.8 (2)		
O(3)	48(e)	0,1132 (4)	0,0852 (4)	0,4237 (5)	2,6 (2)		

* Le taux d'occupation du site est de 0,75.

Tableau 2. Principales distances interatomiques (Å) et angles (°) des liaisons dans CeNH₄P₄O₁₂

Tétraèdre l	PO₄				
Р	Ċ	D(1)	O(1)	O(2)	O(3)
O(1)	1,6	07 (4)	2,528 (6	5) 2,456 (6)	2,524 (5)
O(1)	103	3,0 (3)	1,624 (4	() 2,513 (6)	2,504 (6)
O(2)	105	5,4 (2)	108,0 (2	2) 1,480 (6)	2,570 (6)
O(3)	110),0 (2)	107,9 (3	3) 121,1 (3)	1,472 (4)
РР	2,867 (2)		P-O(1)-P		125,1 (3)
		P-P-P		89,29 (1)	
Polvèdre C	CeO.			Octaèdre NO.	
$4 \times Ce = O(2)^{\circ}$ 2.508 (5)		$3 \times N - O(2)$		3.10(2)	
$4 \times Ce - O(3)$ 2,461 (4)		$3 \times N - O(3)$		3,05 (2)	
				• •	

Références

- AVERBUCH-POUCHOT, M. T. & DURIF, A. (1983). J. Solid State Chem. A paraître.
- BAGIEU-BEUCHER, M. & GUITEL, J. C. (1978). Acta Cryst. B34, 1439-1442.
- Enraf-Nonius (1979). SDP. Structure Determination Package. Enraf-Nonius, Delft.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press.
- PAULING, L. & SHERMAN, J. (1977). Z. Kristallogr. 96, 481-487.
- RZAIGUI, M. (1983). J. Solid State Chem. A paraître.
- SOLDATO, E. A., KUZ'MIN, E. A., ILYAKHIM, V. V. & BELOV, N. V. (1981). Sov. Phys. Dokl. 26, 254–256.

Structure of Pentasodium Dihydrogen Orthophosphate Diphosphate(V), $Na_{5}H_{2}(PO_{4})(P_{2}O_{7})$

BY DIETMAR M. WIENCH AND MARTIN JANSEN

Institut für Anorganische Chemie der Universität, Callinstrasse 9, D-3000 Hannover 1, Federal Republic of Germany

(Received 26 May 1983; accepted 8 August 1983)

Abstract. $M_r = 385 \cdot 88$, triclinic, $P\overline{1}$, a = 10.862 (2), b = 8.426 (3), c = 7.001 (2) Å, $\alpha = 128.27$ (4), $\beta = 99.21$ (4), $\gamma = 88.84$ (3)° [Niggli reduced cell: a = 6.851, b = 7.001, c = 10.862 Å, $\alpha = 80.79$, $\beta = 82.03$, $\gamma = 74.92^{\circ}$; transformation matrix $0\overline{11}/00\overline{1}/100$], V = 494.0 (4) Å³, Z = 2, $D_x = 2.59$ Mg m⁻³, F(000) =

380, Mo $K\alpha$, $\lambda = 0.71069$ Å, $\mu = 7.63$ cm⁻¹, room temperature, final R = 0.077 for 2272 reflections. The structure consists of both orthophosphate and diphosphate anions, which are connected by H bonds forming a three-dimensional network. The diphosphate shows an eclipsed conformation.